[6.1]-[6.2] Quiz Review

Page: 461-464

1. A $15-\mathrm{m}$ ladder leans against a wall at an angle of 55° to the horizontal ground. To the nearest tenth of a metre, how far from the wall is the base of the ladder and how far up the wall does it reach?

Sketch a diagram.
The length of the ladder is $O P$.
The x-coordinate of P is the distance of the ladder from the base of the wall.
$x=r \cos \theta \quad$ Substitute: $r=15, \theta=55^{\circ}$
$x=15 \cos 55^{\circ}$

$x=8.6036 \ldots$
The base of the ladder is approximately 8.6 m from the wall.
The y-coordinate of P is the distance that the ladder reaches up the wall.
$y=r \sin \theta \quad$ Substitute: $r=15, \theta=55^{\circ}$
$y=15 \sin 55^{\circ}$
$y=12.2872$. .
The ladder reaches approximately 12.3 m up the wall.
2. Multiple Choice Which statements are correct?
I. $\cos 60^{\circ}+\sin 30^{\circ}=1$
II. $\sin 60^{\circ}+\cos 30^{\circ}=\sqrt{3}$
III. $\cos 45^{\circ}+\sin 45^{\circ}=\sqrt{2}$
IV. $\frac{\cos 45^{\circ}}{\sin 45^{\circ}}=1$
A. only I and II
B. only III and IV
C. no statements
D. all statements
3. For each angle below:
i) Sketch it in standard position.
ii) Determine its reference angle.
iii) Identify the other angles from 0° to 360° that have the same reference angle.
a) 205°
i) Since the angle is between 180° and 270°, the terminal arm lies in Quadrant 3.
ii) Its reference angle is: $205^{\circ}-180^{\circ}=25^{\circ}$
iii) In Quadrant 2, the angle with the same reference angle is: $180^{\circ}-25^{\circ}=155^{\circ}$
In Quadrant 4, the angle with the same reference angle is: $360^{\circ}-25^{\circ}=335^{\circ}$

b) 12°
i) Since the angle is between 0° and 90°, the terminal arm is in Quadrant 1.
ii) Its reference angle is: 12°
iii) In Quadrant 2, the angle with the same reference angle is: $180^{\circ}-12^{\circ}=168^{\circ}$
In Quadrant 3, the angle with the same reference angle is:
 $180^{\circ}+12^{\circ}=192^{\circ}$
In Quadrant 4, the angle with the same reference angle is: $360^{\circ}-12^{\circ}=348^{\circ}$
4. The point $\mathrm{P}(11,-7)$ is on the terminal arm of angle θ in standard position.
a) Sketch the angle.

Plot $P(11,-7)$; draw a line through $O P$.
Label $\boldsymbol{\theta}$.
b) Determine the primary trigonometric ratios of θ. Let the length of $\mathrm{OP}=r$.
Use: $r=\sqrt{x^{2}+y^{2}} \quad$ Substitute: $x=11, y=-7$
$r=\sqrt{(11)^{2}+(-7)^{2}}$
$r=\sqrt{170}$
$x=11, y=-7, r=\sqrt{170}$
$\sin \theta=\frac{y}{r}$
$\cos \theta=\frac{x}{r} \quad \tan \theta=\frac{y}{x}$
$=\frac{-7}{\sqrt{170}} \quad=\frac{11}{\sqrt{170}} \quad=\frac{-7}{11}$
c) To the nearest degree, what is θ ?

Use: $\cos \theta=\frac{11}{\sqrt{170}}$
The reference angle is:
$\cos ^{-1}\left(\frac{11}{\sqrt{170}}\right)=32.4711 \ldots$ 。
In Quadrant 4, θ is approximately: $360^{\circ}-32^{\circ}=328^{\circ}$
5. To the nearest degree, which angles satisfy the equation $\cos \theta=-\frac{4}{7}$
for $0^{\circ} \leq \theta \leq 360^{\circ}$?
Use: $\cos \theta=-\frac{4}{7}$
The reference angle is:
$\cos ^{-1}\left(\frac{4}{7}\right) \doteq 55^{\circ}$
In Quadrant $2, \theta$ is approximately: $180^{\circ}-55^{\circ}=125^{\circ}$
In Quadrant $3, \theta$ is approximately: $180^{\circ}+55^{\circ}=235^{\circ}$
6. a) Sketch a diagram to show these angles in standard position: $0^{\circ} ; \quad 90^{\circ} ; \quad 180^{\circ} ; \quad 270^{\circ} ; \quad 360^{\circ}$
b) Without using technology, determine the sine, cosine, and tangent of each angle in part a.
For 0°, the terminal arm is on the positive x-axis, so $x=r$ and $y=0$.

$$
\text { Use: } \begin{aligned}
\sin \theta & =\frac{y}{r} & \cos \theta & =\frac{x}{r} & \tan \theta & =\frac{y}{x} \\
\sin 0^{\circ} & =\frac{0}{r} & \cos 0^{\circ} & =\frac{r}{r} & \tan 0^{\circ} & =\frac{0}{r} \\
& =0 & & =1 & & =0
\end{aligned}
$$

For 90°, the terminal arm is on the positive y-axis, so $x=0$ and $y=r$.

$$
\begin{array}{rlrl}
\sin 90^{\circ} & =\frac{r}{r} & \cos 90^{\circ} & =\frac{0}{r} \\
& =1 & & \tan 90^{\circ}=\frac{r}{0^{\prime}}, \text { which is undefined } \\
\end{array}
$$

For 180°, the terminal arm is on the negative x-axis, so $x=-r$ and $y=0$.

$$
\begin{aligned}
\sin 180^{\circ} & =\frac{0}{r} & \cos 180^{\circ} & =\frac{-r}{r} & \tan 180^{\circ} & =\frac{0}{-r} \\
& =0 & & =-1 & & =0
\end{aligned}
$$

For 270°, the terminal arm is on the negative y-axis, so $x=0$ and $\boldsymbol{y}=-r$.
$\begin{array}{rlrl}\sin 270^{\circ} & =\frac{-r}{r} & \cos 270^{\circ} & =\frac{0}{r} \\ & =-1 & & \tan 270^{\circ}=\frac{-r}{0}, \text { which is undefined } \\ & =0 & \end{array}$

$$
=-1 \quad=0
$$

For 360°, the terminal arm is on the positive x-axis, so $x=r$ and $y=0$.

$$
\begin{aligned}
\sin 360^{\circ} & =\frac{0}{r} & \cos 360^{\circ} & =\frac{r}{r} & \tan 360^{\circ} & =\frac{0}{r} \\
& =0 & & =1 & & =0
\end{aligned}
$$

7. Determine the exact primary trigonometric ratios for each angle in standard position.
a) 135°

The terminal arm of the angle lies in Quadrant 2, and its reference angle is: $180^{\circ}-135^{\circ}=45^{\circ}$

$$
\begin{aligned}
\sin 135^{\circ} & =\sin 45^{\circ} & \cos 135^{\circ} & =-\cos 45^{\circ} \\
& =\frac{1}{\sqrt{2}} & & =-\frac{1}{\sqrt{2}} \\
\tan 135^{\circ} & =-\tan 45^{\circ} & & \\
& =-1 & &
\end{aligned}
$$

b) 300°

The terminal arm of the angle lies in Quadrant 4, and its reference angle is: $360^{\circ}-300^{\circ}=60^{\circ}$

$$
\begin{aligned}
\sin 300^{\circ} & =-\sin 60^{\circ} & \cos 300^{\circ} & =\cos 60^{\circ} \\
& =-\frac{\sqrt{3}}{2} & & =\frac{1}{2} \\
\tan 300^{\circ} & =-\tan 60^{\circ} & & \\
& =-\sqrt{3} & &
\end{aligned}
$$

c) 210°

The terminal arm of the angle lies in Quadrant 3, and its reference

$$
\begin{array}{rlrl}
\text { angle is: } & 210^{\circ}-180^{\circ}=30^{\circ} & & \\
\begin{array}{rlrl}
\sin 210^{\circ} & =-\sin 30^{\circ} & \cos 210^{\circ} & =-\cos 30^{\circ} \\
& =-\frac{1}{2} & & =-\frac{\sqrt{3}}{2} \\
\tan 210^{\circ} & =\tan 30^{\circ} & & \\
& =\frac{1}{\sqrt{3}} &
\end{array}
\end{array}
$$

8. Angle θ is in standard position and its terminal arm lies in

Quadrant 4. The cosine of its reference angle is $\frac{1}{8}$. Determine the exact values of $\sin \theta, \cos \theta$, and $\tan \theta$.

For the reference angle in Quadrant 1:
Use: $r^{2}=x^{2}+y^{2} \quad$ Substitute: $x=1, r=8$

$$
\begin{aligned}
(8)^{2} & =(1)^{2}+y^{2} \\
y^{2} & =63 \\
y & =\sqrt{63}
\end{aligned}
$$

In Quadrant 4, $x=1, y=-\sqrt{63}, r=8$
Use: $\sin \theta=\frac{y}{r}$
$\cos \theta=\frac{x}{r}$ $\tan \theta=\frac{y}{x}$

$$
=\frac{-\sqrt{63}}{8}
$$

$$
=\frac{1}{8}
$$

$$
=\frac{-\sqrt{63}}{1} \text {, or }-\sqrt{63}
$$

9. Multiple Choice Angle θ is in standard position, with $\tan \theta=-\frac{3}{2}$. Which statement could be correct?
(A.) $\sin \theta=\frac{3}{\sqrt{13}}$
B. $\cos \theta=-\frac{3}{\sqrt{13}}$
C. $\sin \theta=-\frac{2}{\sqrt{13}}$
D. $\cos \theta=\frac{3}{\sqrt{13}}$
